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Esercizio 1 Studiare la funzione
f(x) = (x2 + 1)ex

determinandone la continuità, la derivabilità, gli eventuali punti di massimo o minimo assoluti e relativi, estremi
inferiore e superiore, gli eventuali asintoti, intervalli di convessità e punti di flesso. Tracciare un grafico approssimativo
della funzione.

Soluzione
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Esercizio 2 Determinare per quali valori del parametro α ∈ R la funzione f(x) =
x5−α(1− x)2α

sinx
è integrabile in

senso generalizzato sull’intervallo (0, 1).

Soluzione

Osserviamo che la f è continua e positiva in tutto l’intervallo di integrazione ma potrebbe non essere limitata negli
intorni degli estremi dell’intervallo per alcuni valori di α. Infatti, per x→ 0+

f(x) ∼ x5−α

sinx
∼ x5−α

x
=

1

xα−4



che, per il criterio del confronto asintotico, è integrabile se e solo se α− 4 < 1 quindi α < 5. Per x→ 1− invece

f(x) ∼ (1− x)2α =
1

(1− x)−2α

che è integrabile se e solo se −2α < 1 quindi α > −1

2
. In definitiva la f è integrabile in senso generalizzato su (0, 1)

se e solo se −1

2
< α < 5.

Esercizio 3 Studiare la convergenza della serie
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Soluzione

Osserviamo che la serie è a termini positivi essendo
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≤ 1 ∀n ≥ 2. Inoltre:
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la serie quindi converge per il criterio del confronto asintotico essendo
5

2
> 1.


